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Abstract

In this article, we improved the Fan algebraic direct method to construct the Jacobi
elliptic solutions for nonlinear partial fractional partial differential equations based on
the Jumarie's fractional derivatives. We use the improved direct proposed method to
find the Jacobi elliptic solutions for some nonlinear fractional differential equation in
mathematical physics namely the space—time fractional Hirota Satsuma KdV equations
This method is powerful and effective for finding the Jacobi elliptic solutions to the
nonlinear partial fractional differential equations. Jacobi elliptic solutions for nonlinear
fractional differential equations degenerate the hyperbolic solutions and trigonometric
solutions when the modulus m —1 andm -0 respectively. This method can be
applied to many other nonlinear fractional partial differential equations in mathematical

physics.
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1. Introduction

Nonlinear partial fractional equations are very effective for description of many physical
phenomena such as theology, damping law , diffusion process and the nonlinear
oscillation of earthquake can be modeled with fractional derivatives [1-2]. Also many
applications of nonlinear partial fractional differential equations can be found in
turbulence and fluid dynamics and nonlinear biological system [1-10]. There are many
methods for finding the approximate solutions for nonlinear partial fractional differential
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equations such as Adomian decomposition method [3-5], variation iteration method [6],
homotopy perturbation method [7,8,9] and homotopy analysis method [10] and so on .
No analytical methods has been available before 1998 for nonlinear fractional differential
equations. Li etal [11] have proposed the fractional complex transformation to convert
the nonlinear partial fractional differential equations into ordinary differential equations
so that all analytical methods devoted to advanced calculus can be applied to fractional
calculus. Recently Zhang etal [12] have introduced a direct method called the sub-
equation method to look for the exact solutions for nonlinear partial fractional
differential equations. He [13] have extended the exp- function method to fractional
partial differential equations in sense of modified Rieman Liouville derivative based on
the fractional complex transform. Also Wang etal [14] have studied the symmetry
properties of time fractional KdV equation in the sense of the Riemann-Liouville
derivatives using the Lie group analysis method. There are many method for solving the
nonlinear partial fractional differential equations such as [15,16]. Fan etal [17,18] ,
Zayed etal [19] and Hong etal [20,21] have proposed an algebraic method for nonlinear
partial differential equations to obtain a series of exact wave solutions including the
soliton, rational ,triangular periodic , Jacobi and Weierstrass doubly periodic solutions.
In this paper, we will improve the extended proposed algebraic method to solve the
nonlinear partial fractional differential equations. Also we use the improve extended
proposed algebraic method to construct the Jacobi elliptic exact solutions for space-time
fractional nonlinear Hirota Satsuma KdV equations in the following form[22] :

DU = % D3y —3uD%u +3vDZu +3uDZw,
DV =-D3%v +3uD%; (1)
D¥w=-D3*w+3uDZw;

where 0<a<1.

2. Preliminaries

There are many types of the fractional derivatives such as the Kolwankar- Gangal
local fractional derivative [24], Chen's fractal derivative [25],Cresson's derivative [26],

Jumarie's modified Riemann--Liouville derivative [27,28]. In this section, we give some
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basic definitions of fractional calculus theory which are be used in this work. Jumarie's

derivative is defined as

DY f(x) =

1 dfF .
F(l—a)&-(‘;(x_g) (f(&)-1(0)dé, O<a<], 2)

where f : R—>R , x> f(x) denotes a continuous (but not necessarily first-order-
differentiable) function. We can obtain the following properties:

Property 1. Let f(x) satisfy the definition of the modified Riemann-Liouville
derivative and f(x) be a ( ka) th order differentiable function. The generalized Taylor

series is given as [28,30]
© hak

f(x+ h)=k§J ()]

Property 2. Assume that f(x) denotes a continuous R—R function. We use the

f (@) (x), 0<a<l. ©)

following equality for the integral w.r.t. (dx)* [29,30]:

1 X o
r(a+1)(j)f(§)(dx) , O<a<l. 4)

I;"f(x)=$z(x—§)“‘lf(«:)d§=

Property 3. Some useful formula and important properties for the modified Riemann-
Liouville derivative as follows [30-33]:

= —F(E(j:_r)a) e, r>0 .
DY [f(t)a(t)]= f()Dg(t)+g(t)Df f (1) ©)
DY [ f(g(®)]= f,(a(®))Dg(t)
Df [ f(g(1)]= Dy f(g)lg'®)]" @

The function f(x) should be differentiable with respect to x(t) and x(t) is fractional
differentiable in (7). The above results are employed in the following sections. The
Liebnz rule is given (6) for modified Riemann- Liouville derivative which modified by
Jumarie's in [30]. The modified Riemann-Liouville derivative has been successfully

applied in probability calculus [31], fractional Laplace problems [32], the fractional
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variation approach with several variables [33], the fractional variational iteration method
[34], the fractional variational approach with natural boundary conditions [35] and the
fractional Lie group method [36].

3. Algebraic direct method for nonlinear partial fractional differential
equations

Consider the following nonlinear partial fractional differential equation:
U (u, D¥u, D%, D#%u, D2%u,....) =0, (8)

where u is an unknown function, U isa polynomial in u and its partial fractional

derivatives in which the highest order fractional derivatives and the nonlinear terms are
involved. We give the main steps of the algebraic direct method for nonlinear partial
fractional differential equation.

Step 1. We use the travelling wave transformation
u(x,t)=u(é), & =X +ct, (9)
where ¢ is an arbitrary constant. The transformation (9) permits us to convert the partial

fractional differential equations (8) to the fractional ODE in the following form

P@,Dfu,Du,..)=0,

(10)
where P is a polynomial in uand its total derivatives with respect to &.
Step 2. We suppose that Eq. (10) has the following solution
N .
ué) = Zaigzﬁ' &), ay 20, or  a_y %0, (11)

i=—N
where «; are arbitrary constants to be determined later, while ¢(&) satisfies the
following nonlinear fractional first order differential equation:

[DEHET = e +e16° (£) +e,8* (&), (12)
where ey, e; and e, are arbitrary constants.
Step 3. We determine positive integer N of formal polynomial solution given in Eqg.
(11) by balancing nonlinear terms and highest order fractional derivatives in Eq.(10).

Step 4. Substituting Egs. (11) and (12) into Eqg. (10) and collecting the coefficients of
#(£), and setting the coefficients of [¢(&)]'[DE#(E)]’ (j =01 i=021+2,...) to be zero,
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we get an over-determined system of algebraic equations with respect to
a;(i=01£1+2,..) and c.

Step 5. We solve the over-determined system of algebraic equations to determine
a;(i=0x1%£2,...) and c.

Step 6. In order to obtain the general solutions for Eq. (12), we suppose #(¢) =w(n) and

[04
a nonlinear fractional complex transformation 7= 3 . Then by Eq. (12) can be
I'a+1)
turned into the following nonlinear ordinary differential equation
[v'(7)]* = eq +ew () + e * (1) (13)
The general solutions of (13) have been discussed in [37-39] as the following table
€o €1 €s (//(77) ¢(§)
1 _ 2 2 sn(n) or cd a a
(1+m*) m o) sn( J ) or cd( ¢ )
INa+1) I'a+1)
1-m? 2m? -1 —m? cn(zr) en( & )
IN'a+1)
m2 _1 2_m?2 -1 dn(z) dn( £ )
INa+1)
) ) e s(—5—)or de(—5—)
m ~(1+m?) 1 or (e +1) T'(a+1)
de(n7)
—m? 2m? -1 1-m? ne(7) e & )
IN'a+1)
IN'a +1)
1-m? 2-m? 1 cs(n) es( & )
I'a+1
SC(F(a +1))
1 2m? -1 | m?(m? -1) sd(n) Sd(r(gil))
a
m?(m? -1 2m?-1 1 ds(r) ds(r(fa 1))
o+
1 1 2 1 ns(r7) £ cs(n) g £
= =@1-2m =
4 2( ) nS(F(a +1))iCS(F(a +1))
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Ta-md) | Z@em?) | Ta-myy| O el ) s
mTZ %(mz _2) mTz sn(r7) +icn(y) Sn(l”(i—o;l)) +i cn(r(io;l))
% %(1_ m?) % V1-m2sc(n)  de(y) J1-m? Sc(l"(i—(:-l)) + dc(r(i—il))
%(mZ—D %a+nﬁ) %OHZ—D msd (7) £nd () lnsdgxiib)indgxiin)
% %‘mz‘a %; I§¥%5 mﬂxiin)mujmﬁxiin»

where 0 < m <1 is the modulus of the Jacobi elliptic functions and i =+/-1.
Table 1
We put some of the general solutions of Eq. (13) have been discussed in table 1 and there

are other cases which omitted here for convenience , (see [37]).

Step 6. Since the general solutions of (12) and (13) are discussed in the above table 1,
then substituting «; (i =0,1,...,.£m),e; , €;,e, and the general solutions of (12) and
(13) into (11), we have obtained more new Jacobi elliptic exact solutions for nonlinear
partial fractional derivatives equation (8).

4. Jacobi elliptic solutions for space-time fractional Hirota Satsuma KdV
equations

In this section, we will construct the Jacobi elliptic wave solutions for the space — time
fractional Hirota Satsuma KdV equations in the following form [22]:

Dfu = % D3%y —3uD%u +3vDZw+3wDoy,

DV =-D3%v +3uD%;

D¥w =-D3*w+3uD%w;
where 0<a <1. EQ. (14) has been investigated in [22] using the fractional sub-equation

(14)

method. Let us now solve Eq, (14) using the proposed method of Sec. 2. We use the
traveling wave transformation
u=u(g), v=v($)

w=w(¢&), £=x+ct. (15)
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where c is an arbitrary constant to be determined later. The transformation (15) permits
us to convert the partial fractional Hirota Satsuma KdV equations (14) to the following
nonlinear fractional ODE in the following form:

c“Diu= % DZ (Df (DZu)) —3uDZu +3vDEw+3wDE v,

c“Div=-Dg (Dg (DfV)) +3uDE v, (16)
c“Diw=-DZ (D (Dfw))+3uDZ w.
By balancing the highest order fractional derivatives with the nonlinear terms in Egs. (16)
we have the formal solutions of Eq.(16) as following:

a
U(E) = ag + (&) + a4 (&) + ¢(5) #2(&)
b
. b A 17
V(€) =bg +big(£) + bpp” () + ¢(§) $2 (&) ”
L
=La+L L
W(E) = Lo+ Lig(&) + Log* (&) + ¢(§) 2@

where a;,b;,L;,i=01,...,4 are constants to be determined later, such that a, =0 or
a; #0, bp#0or byg=#0and L,=#0or L,=0.Substituting (17) along with Eq.

(12) into (16), collecting all the terms of the same orders ¢i (£),i =0,£1,%2,... and setting

each coefficient to be zero, we have obtained a set of algebraic equations which can be
solved by using Maple or Mathematica to obtain the following cases:
Case 1.

a
c 4e,
ag =—+——, a, = 4e,, a, = 4e,,
0 3 3 2 2 4 0
4e a de,e 4e?
by = ——9 (—2L,&; —2C L, +3Lg€0), b, = —29 by = —2
0 3L4( 4% — 4 0 O) 2 L4 4 |_4 (18)
L2292L41
€o

a1:b1:a3 :b3:Ll:L3 :O,

where eg,€;,€, are arbitrary constants.
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Let us now write down the following exact solutions of the space-time fractional Hirota
Satsuma equations (14) for case 1.

i 21 e 205420

ué)=—-+ 3 +4e,0°(&) + 20
derey o 485

=———(-2L4e, -2 L 3L , 19

V(&) 3L4( 481-2C Ly +3Lge) +—— L, $°(8) WaG (19)
e, L

W(E) = L +—224%(5) +
Dbor 5o #2 (5)

The general solutions of Eq. (13) dependent on the values of ey,e;,e,, consequently we

get the following families of exact solutions :

Family 1. e; =1, &, =—(1+m?), and e, = m?  the Jacobi elliptic exact solutions for

Eq.(14) take the following form:

u; (&) =%—4(1+—mz)+4m25n2(w)+4 nsz(w)

3 INa+1) INa+1)
_ 4 2y .2 4m? 5, (x+ct)® 4 o (x+ct)”
vi (&) = 3L§1 [2L, 1+ m“)—-2c Ls+3Ly]+ L, sn (F(a+1))+L4 ns (—F(a+1))
2, (x+ct)” 2 (x+ct)
wy (&) = L0+m L,sn (m)+L4ns (m).

(20)
Or

Cc"aem?) L, o (x+ct)® ) (x+ct)®
u (&) = 3 3 +4m“cd (F(a+l))+4dc (—F(a+1))

4 2 a 4m? 5 (X +ct)* 4 5 (x+ct)”
=——2L,0+m“)-2c L, +3L cd —dc (——),
Vi ($) 3|_%[ 4(d+m?) 4 +3ho]+ L4 (F(a+1))+ L4 (F(a+1))

wy(£) = Lo + m*Lycd 2(%) + L4dcz(%) .

(21)
Family 2. eg =1-m?, e = 2m? -1, and ey = —m?  the Jacobi elliptic exact solutions

for Eq.(14) take the following form:
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¢ aem?-) o, (x+ct)” oy (X
u, (&) = 3 +—3 4m“cn (—F(a+1))+4(1 m<) nc (—F(a+1))’
2
V2(§)=—4(1_—;n)[—2L4(2m2—l)—2caL4+3LO(1—m2)]
3L (22)
~ 4m2(l—m2)cn2((x+ct)“)+ 4(1-m?)2 ncz((x+ct)“)’
L4 I'a+1) L4 I'a+1)
B m2L, 5 (X+ct) 2 (Xx+ct)”
Wz(f)—l-o—l_mz cn F(a+1))+L4 nc (m).

Family 3. e, =m?-1, e =2-m?, and e, =—1 the Jacobi elliptic exact solutions

for Eq.(14) take the following form:

¢ ae-m?) L (x+c)” 2 o2 (XEC)?
us(é) = 3 +—3 4dn (—F(a+1))+4(m nd (—F(a+1))’
2 _ a
V3(§)=—4(m—21)[—2L4(2—m2)—20 L, +3Ly(m? —1)]
313 2

_4(m®-1) dnz((x+ct)"‘)+4(m2—1)2 ndz((x+ct)“) |
L4 INa+1) L, INa+1)
L 2 (x+ct)” 2 ,(x+ct)?
w3($) = Lo m? D 1ﬂ(Olel))+|—4 nd (—F(a+1))'

Family 4. e =1-m?, e; = 2-m?, and e, =1 the Jacobi elliptic exact solutions for

Eq.(14) take the following form:

u4(§)=%+4(2‘Tm2)+4cs2(%)+4(1—m2) sc%%x
v4(§):-%[—2L4(2—m2)—2c“L4+3LO(1—m2)] 2

e SR
() = Lo+ pes? G s s

Family 5. e; =1, &, =2m? -1, and e, =m?(m? —1) the Jacobi elliptic exact solutions

for Eq.(14) take the following form:
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_i 4(2m? -1) 2 2 (x+ct)? 2 (x+ct)?
us (&) = 3 +—3 +4m? (m 1)sd ( Clat 1))+4ds (F(a+1))’

4 2 4m?(m? =1 5 ,(x+ct)® 4 o (x+ct)”
vg (&) = 3L§1( 2L4(2m° -1)-2c L, +3Ly)+ L, sd (F(a+1))+ L, ds (—F(a+1) ),
W (£) = Lo +m2(m? —1)L,sd ((X+C+t)1))+L4 dsz((;‘(;it)l) )

(25)
. 1 1 5 1 A .
Family 6. e, =7 e =E(1—2m ), and e, = the Jacobi elliptic exact solutions for

Eq.(14) take the following form:

()= &+ 2022 20%) | ns e e I (S S RE S G

3 ra+n) T+ rard) T+

ve(8) = —é(—ua—mz) ~20 L+ L) 4i4 [ns((lf(;t’l) )+ ((X(+ Ct)) NG
o [ns((x(;‘f);) s Ct)l) 2,

We(£) = Lo +Ly[n ((X(m);) ((X(”t)o)‘)]2 Latns( t)lj) ((X(”t)j)]‘

(26)
. 1 ’ 1 2 1 2 A
Family 7. e, =Z(1—m ), el=z(1+m ), and e, =Z(1—m ) the Jacobi elliptic

exact solutions for Eq.(14) take the following form:

L e s D2
ca-m?) e oo ((FX(””))]-Z,
v7(§)——(13Ln: )[_EL“(“m) 2L, +> Lo(l m?)] + @ 4T4) [n ((x(;fi)lf;‘) ((x(+ct)“
+& 4[‘4) oD% soX D2

(x+ct)* (x+ct)* (x+ct)” (x+ct)* ._
w7 ($)=Lo + |—4[nc(ﬁ) (m)] + Ly [nc( M(a+1) )+ sc( M(a+1) )12

(27)
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m2 2

Family 8. e, = e =%(m2 —-2), and e, :mT the Jacobi elliptic exact solutions

for Eq.(13) take the following form:

u@:§+(szZ) i ) i
+m? [sn(%) ((X(+Ct)‘;‘)]_ |
4:1 [Sn((;((z?lj )t ((X(+ Ct)(; I
M) =tor me%) + C”(%)]2 Ly [sn(%) +i cn(%)]—?
(28)

Family 9. e, =%, e =%(1—m2), and e, =% the Jacobi elliptic exact solution for

Eq.(13) takes the following form:

u(é):c 2(1 m ) [ﬂsc((x(+0t)))+ ((x(+ct)))]

+Wi-m2. sc((rx(zcj)l) ((X(+ ) & 2,

v(§>=—3%[—L4(1—m2)—2c“L4+§L01+f[\/1_mzsc(—(rx(;"” )+ do(r 2

+1) IN'a+1)
/7 (x + ct)“ (x+ct)* .o
+E[ ( de( T(a+ ))]

w(§)=Lo+L4[\/1—m2sc((rX&—C+l)) ((X(“t) 2 + Ly [V1-m? ((X dc((rx(ﬁ)l) 12,
(29)

Also , we can construct more families of the exact Jacobi elliptic solutions for the case

1, we are omitted here for convenience to the reader.
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Case 2.

ag =1(c“ +e; +64/6560), a, = 2e,, a, =26,

2L 2,/ese
by = o TU00 (¢ —gy +64fey80), by = -2 (2c% —e; + 646580,
3L,

313

: (30)

2 L. /€€
=280 (¢ _g, +6.fe,60), L, =220
3L,

€o

a1:a3 =b2 :b4:|_2:|_4 :0,

where Lg,Ls3,ep,6 and e, are arbitrary constants. Let us now write down the following

exact solutions of the space-time fractional Hirota Satsuma equations (14) for case 2:

1 4 2 2€
ué) = 3(c +e, +64e,e0)+2e,0°(E) + ¢2(§) ,
V() = -2 2 ey + 6\/9230)——\'20(20 — 1 +6,/2589)¢(&)
L3 Ls
. 2eq(2c” —e; +64/€9€7) (31)
3Ly9(£) |

L
=L 3 2 0
W) =Ly +—— e P(&) + ¢(§)

The general solutions of Eq. (13) dependent on the values of ey,e;,e,, consequently we

get the following families of exact solutions :

Family 1. ey =1, &, = —(1+m?), and e, = m?  the Jacobi elliptic exact solutions for

Eq.(14) take the following form:

Uo(§) =3 ~(c” ~ L+ m?)=6m) + 2m%sn ((X(;C:)l))+2”52((;(;C+t)1))’
Vip(&) = 2Lo 220 (2¢% + (1+m )+6m)+27(20 +(L+m )+6m)sn((X+Ct)a
3L3 3'—3 F(a +1) (32)
L 22+ (14 mZ)iBm) X+
3L, T+
Wig (€)= Lo £ 6mL, n((X+Ct) )+ L ns((x+ct)“)
S fa+d) T’

Or
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u1o(§)=f( — @+ m?)+6m)+2m?cd ((x(+ct))+2d02((x+ct)a

+1) INa+1)

),

vm(f)——i(ZC +(1+m? )+6m)+—(2c +(1+m?)+6m)c d((X+ct)

a 2 a
+2(2<: +@+m )iGm)dC((x+Ct)
3L, I'a+1)

),

(x +ct)” (x +ct)”
Wyo (&) = Lo £ 6mL; cd( Mo +1) Mo+ 1)

, e, =2m? -1, and e, =-m

) + Lydc(

).

2 2

Family 2. eg =1-m the Jacobi elliptic exact solutions

for Eq.(14) take the following form:

U1 () :E(Ca +2m? ~1+ Gm) - 2mzcn2((x(+ Ct)j )+2(1- mZ)nc;Z((X(+ LI); )
(04

2 _
v11(5)=—2L°§LZ””[ 2 _1)4.6/m?(m? ~1)] - W[w-(mz_n

3

iGW]Cn((X+Ct) ) 21— m? )[20“ _(2m? _1)J_F6W] nC((x+ct) Y

M+l 3L, F(a+1)
B Laym?(m? =1)  (x+ct)® (X +ct)“
Wy (§) = Lo + =5 e SR+ Lyne(L R,
(34)

2

Family 3. e, =m? -1, e, =2-m?, and e, =—1 the Jacobi elliptic exact solutions

for Eq.(14) take the following form:

“12(9&)_*(‘3 +(2-m2) +6J1-m?) - 2dn ((X(+Ct)))+2(m —1)nd ((X(+Ct)1))
1o@=-220 D) siim?) -2 ﬁ 207 ~2-m?) +631-m?Jan(E L
3 Ly
+M[2Ca _(2_m2)+6m] nd((X+Ct)a)’
3L, [(a+1)
_ Lyvi-m?  (x+ct)® (x+ct)*
M (&)=l + m? -1 Oln(1“(05+1))+L3 nd(1“(0c+1))'

(35)
Family 4. e; =1-m?, e, =2-m?, and e, =1 the Jacobi elliptic exact solutions for

Eq.(14) take the following form:
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U13(§)=1[C“ +2-m? +6\/1—7]+2csz((X+Ct)a)+2(1_m2)sc2(w),

I'(a+1) I(a +1)
(@) -~ 228 M e o m) +6i-m?] -2 ﬁ 267 - @-m?) + 61-m?] o5 -
3L L, F(a+1)
220D e o my 4 eyTom s D)
3'—3 F(a+1)
_ Lyvi-m?  (x+ct)” (x+ct)®
Hs(e)=to+ 1-m? Cs(F(a+1))+Lgsc(m).
(36)

Family 5. e; =1, ; =2m? -1, and e, =m?(m? —1) the Jacobi elliptic exact solutions

for Eq.(14) take the following form:

“14(5)=1[C“+(2m2—1)+6m]+2m2(m ~1)sd ((X(+C+t)1)) 2dsz((;((zc-:)1)),

v14<«:>——2L° [2c% — (@m? ~)+ 6ymE(m 7]~ 2™ (M =D (m D e — 2m? 1)
2,2 (x+ct)” a fom2 2,2 (x+ct)”
+6ym%(m —1)]sd(r(a+1))+I[20 (2m 1)+6\/m]ds(r(a+l))
Wi (€)= Lo + L lmz(mi) d((x+ct) )+L3ds((X+Ct) )

e +1) [(e+1)

Family 6. e, :%, e =E(1—2m2), and e, =% the Jacobi elliptic exact solutions for

(37)

Eq.(14) take the following form:

s (@)= (e +2@-2m2) + )4 2 ((X(+°+‘)1;)+cs((rx(;‘f);)] s oo Xy
v15<§)=—6L°§[2c“—2(1—2m2)+j]—6L3[ ~a-2m?)+ 2 ((X(”t)l))+cs((rx(;°+”1)>]
+6;(2c“ S+ s oo XDy
s (£) = L0+L[s((x( +)1))+cs((rx(+°t)))] FLgn ((X(“t)l))+cs((1f(;“)))]‘1
(38)

Family 7. ey ==(1-m?), & ==(@1+m?), and e, =~(1-m?) the Jacobi elliptic
074 17y 274

exact solutions for Eq.(14) take the following form:
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wda=§m“+ja+m%+60fn9n+la—m%mdgéfg)+ax¥&fgnz
1 (x+ct)” (X+ct)* 5
5 a-mne( D>+wg1a I
we@=- M e Lanny Sy E Mo Ly
3 3
(x +ct)” (x+ct)* .. (@1-m?)
+ 2 a-m3)in o) g o e m?)
+arwnﬂfﬂywéfmyﬁ
(x+ct)” (x +ct)” (x+ct)” (x+ct)* .4
w5 (6) = Lo + Llne( 00 + o LD+ Lne( 2 - soE LT,
2 2
Family 8. e, :m_’ e =%(m2 —-2), and e, :mT the Jacobi elliptic exact solutions

for Eq.(13) take the following form:

(x +ct)“

(@ =3 + 3 (m? -2) + Sm?]+ B(“{“§)+mmrw+nn2
wﬂ@=—“21m“—jmﬁ—a+jmﬁ—;?mw—j( 242 m][(“{“ﬁ)(m)
+mm¥;“§n+g:[ =2 gmA g ien(( S,

W (&) = L0+Lhm“&f§)+mm$&f§n+ghmgaf§)+mm$&“%n4

Family 9. e, :%, e =%(1—m2), and e, =% the Jacobi elliptic exact solution for

Eq.(13) takes the following form:
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1o 1 o 6, 1 5 (x+c)” (x+ct)” o
U18(§)—3(C +2(1 m )+4)+2[ 1-m SC(F(a+l))idC(F(a+l))]

1. 5 (x+ct)? (x+ct)* . _
+§[ 1-m Sc(m) CCo— )]

(e +1)
1 s, 6 — ct)“ (x+ct)*
V18(5)——a[20 2(1—m )+Z] 6L3[ (1 m )+ ][ 1-m ( (m)]
1 a_l 2 § 2 (X+Ct)a (X+Ct) 1
+T3[20 2(1 m )+4][\/1 m SC(F(a+1))id(I“(a ))]
3 2. (x+ct)” (x+ct)“ (x t)"‘ (x+ct)* .4
Wig (&) =Lo + L3[V1-m Sc(ir(au))_d(r( + La[v1-m? ( (r( ))]
(41)

Also , we can construct more of the exact Jacobi elliptic solutions for the case 2, we are

omitted here for convenience to the reader.

4. Some conclusions and discussions

In this article, an algebraic direct method are used to find the exact solutions for
nonlinear partial fractional differential equations. Successfully we have been obtained
the analytical Jacobi elliptic solutions for some nonlinear partial fractional differential
equations in mathematics physics. The reliability of this method and reduction in
computations give this method a wider applicability. Algebraic direct method is
powerful method for constructing many new type of Jacobi elliptic solutions for many
nonlinear partial fractional differential equations in mathematical physics. Jacobi
elliptic solutions are generalized the hyperbolic exact solutions and trigonometric exact
solutions when the modulus m take some special values . This method is clearly a very
efficient and powerful technique for finding the exact solutions for nonlinear partial
fractional differential equations in mathematical physics. Maple and Mathematica have
been used for computations in this paper.
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